https://doi.org/10.5281/zenodo.14824410

Review Article

Role of Nanoparticles and Nanocomposites in Bone Regeneration

S. Lakshmi Ajithan¹, Dhanraj Ganapathy¹, Rajeshkumar Shanmugam², Pradeep C. Dathan¹

Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Thandalam, Chennai 602105, India

Received: 3 July 2024 Accepted: 26 September 2024 Published online: 31 January 2025

Keywords:: bone regenerative materials (BRM), nanoparticles, nanocomposites, osteoconduction, osteogenic, hydroxy apatite, bone tissue engineering

Bone regeneration is a complex process involving numerous cells like osteoblasts, osteocytes, osteoclasts; various pathways and signalling systems. Usually, human body heals the fractures and degenerations by itself. However, in certain cases like severe trauma, infections, carcinomas the self- repair abilities might get impeded. In such circumstances, bone regenerative materials are used. The commonly used materials include autografts, allografts, isografts, alloplasts etc. The advances in bone regenerative materials comprise of demineralized bone matrix xenograft, phytogenic, synthetic materials. The recent researches focus on polymer materials, tissue-engineered bones, nanoparticles etc. Nanoparticles and nanocomposites are gaining popularity due to its effectiveness in combination with tissue engineering process. Nanoparticles are available in the form of nanotubes, nanocrystals, nanoclusters, nanorods, nanofilms to be used for bone regeneration. Various nanoparticles like gold, silver, zinc, hydroxyapatite, titanium dioxide, calcium copper etc are found to have bone regenerative ability. So, the combination of these bone regenerative nanoparticles with compounds with additive effects could develop nanocomposites with synergistic effects in osteogenesis. Nanocomposites with potential benefits in osteogenesis natural, metal, synthetic and ceramic nanocomposites. This review focus on the potential effects of nanoparticles and nanocomposites on bone tissue and its possibility as a future tissue engineering tool for bone regeneration.

© (2024) Society for Biomaterials & Artificial Organs #20006724

Introduction

Bone is a metabolically active connective tissue that facilitates mobility, protects vital organs, and offers structural support, store house of mineral ions and growth factors, location for haematopoiesis [1]. Basically, bone is composed of cells and the extracellular matrix (ECM), which has both organic and inorganic substances. The balance between bone-forming osteoblasts and bone-resorbing osteoclasts characterizes bone health. characterizes bone health. Bone is a specialized kind of tissue which undergoes continuous remodelling. The necessity for regeneration results due to multiple factors like trauma, infections, carcinomas, inflammatory and regenerative conditions. The regeneration depends primarily on the bone structure, cells and its matrix. Also, bone has the unique ability to regenerate, returning to its preinjury, fully-functional state [2]. But when the defect is severe, certain times the body will find it difficult to repair itself. In such

circumstances, bone regenerative materials (BRM) are utilized.

Autografts, isografts, allografts, xenograft are the commonly used bone grafts [3]. But all these grafts materials have its own demerits [4]. To overcome this and to encourage bone regeneration, new approaches are emerging as a result of advancements in BRMs technologies. Natural or synthetic biomimetic bone materials compatible for regeneration are of widely use. Each year newer interventions and innovative researches by incorporating growth factors, growth stimulants with antibiotics, nanoparticles, nanocomposites are being carried out in developing better regenerative high success rate [5]. But the growth stimulants with antibiotic incorporation also points to one of the global threats of antibiotic resistance or anti-microbial resistance as per the world health organisation [6]. Hence further researches are to be conducted to develop materials without potential threat of antibiotic resistance.

Nanoparticles or nanocomposites with countless advantages have been branded as the material of 21st century [7]. Nanoparticles are

E-mail address: drlaxmiajithan@gmail.com (Dr. Lakshmi Ajithan S)

² Nanohiomedicine Lah, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, TamilNadu, India

 $^{^*} Core sponding \, author \,$

materials ranging from particle size 1 to 100 nm [8]. Owing to this smaller particle size in opposition to its bulk counterpart is its lower concentration of point defects which leading to its diverse applications. It includes preclinical and clinical medicine, drug delivery systems, nutrient supplements, physics, optics, electronics and so on [9].

Nanoparticles are utilized in different forms in the bone regeneration. Nanostructured scaffolds provide cells with a more supporting framework akin to natural bone structure and regulate cellular proliferation and differentiation, which aids in the regeneration of healthy tissues [10]. Hydroxy apatite, alumina, zinc oxide, titanium, gold, silver, calcium nanoparticles are the common nanomaterials which exhibit bone regeneration abilities or materials which act as scaffold for bone regeneration. Nanoparticles are coupled with drugs, growth factors or biomolecules to help in target drug delivery [11]. This will also aid in osteoimmunomodulation which in turn will promote osteoinduction by creating an environment that is conducive to bone regeneration [12].

A nanocomposite is a multiphase solid substance, in which one phase is having 1 to 3 dimensions less than 100nm. Also, there should be physical and chemical variation among these phases with change in particle size as well. This multiphase aids in superior properties compared to its individual counterparts [13]. These composites are nowadays widely in tissue engineering, drug delivery, medical and dental implants similar to nanoparticles [14].

Commonly used nanocomposites include ceramic based nano composites, metal based nano composites and polymer based nano composites. All of these materials are beneficial in bone regeneration by osteoinduction and osteoconduction [15]. Their tunable properties, in combination with their ability to replicate the natural environment of bone tissue, make them ideal candidates for the treatment of bone fractures, defects and diseases.

The scope of nanoparticles and nanocomposites are limitless owing to its potential to enhance mechanical characteristics of bone scaffolds and thereby increasing the capacity to tolerate physiological loads. It includes their excellent biocompatibility and bioactivity, osteoconductive and osteoinductive properties and antimicrobial properties as well. It also helps in precise visualization of bone morphology and regeneration with the help of nanoparticle-based contrast agents [16].

Hence further researches are crucial in these areas to develop materials with maximum efficiency and least or nil complications and also for incorporating these advances into clinically relevant treatment modalities to improve the patient outcome. Comprehensive characterization and testing of nanoparticle formulations are necessary to mitigate potential risks and maximize their therapeutic efficacy and safety profiles.

Biology of bone

Bone structure

Bones are primarily structured of dense connective tissue called osseous tissue. Osseous tissue basically consists of cells collagen fibres, mineral contents like calcium and phosphate. Essentially, there are two forms of bone: the compact (cortical) bone which makes upto 80% of total bone in the body. It is resistant to bending, torsion and compression. Commonly seen in shaft of long bones like femur, tibia. The second type is the cancellous (trabecular or spongy) bone which makes up to 20% of total bone. Seen in vertebral body, pelvis etc. [1].

Bone cells

Bone constitutes of mainly 30% of organic and 70% of inorganic matrix [17]. Type I collagen makes up the majority of the organic matrix, whereas the non-collagenous component is made up of proteins, lipids, proteoglycans, osteopontin, and proteins found in the bone matrix, such as fibronectin. Nearly 10% of the extracellular matrix (ECM) is made up of non-collagenous proteins (NCPs), which are crucial for tissue metabolism, cell signalling, mineralization of bone, and hierarchical structure [18].

Mainly there are three cell types namely Osteoblasts, osteoclasts and osteocytes [19]. Osteoblasts are primarily responsible for bone formation and the repair of existing bone. They actively synthesize and secrete a protein mixture known as osteoid, which later undergoes mineralization to become mature bone tissue. Additionally, osteoblasts play a role in hormone production, including the synthesis of prostaglandins. Their multifunctional role contributes to the growth, maintenance, and remodelling of bone tissue [20]. Osteocytes are mature bone cells that have become embedded within the bone matrix. They are originated from osteoblasts, which are accountable for new bone formation. Once osteoblasts have completed the process of secreting new bone matrix, they become osteocytes [21]. Osteoclasts are large, multinucleated cells responsible for bone resorption. They secrete enzymes and acids that dissolve minerals in bone, allowing for the breakdown and removal of old or damaged bone tissue. Osteoclasts play a crucial role in bone remodelling and can create pathways for nerves and blood vessels to traverse through bone [22].

Bone repair and regeneration

Bone fracture or injury healing is a complex process involving multiple cells like progenitor, inflammatory, endothelial and hematopoietic cells. Also, it involves three phases; inflammation, bone production and bone remodelling [17]. Moreover a four-stage model of bone repair were also developed based on histological observations of fracture healing in both human patients and animal models. It includes Stage 1: Inflammation, Stage 2: Soft callus (Fibrocartilage) formation, Stage 3: Hard callus formation, Stage 4: Bone remodelling [23].

The terminal stage of bone healing is characterised by bone remodelling. The process extends beyond a few months. During this process, the bone regenerates and converts condensed matter, returning to its original shape. Additionally, the blood circulation in the area increases. In contrast to other tissues bone healing does not occur with scar formation. Also, the newly formed bone is eventually indistinguishable from the uninjured bone next to it. [24] However, there are some cases of fracture healing where bone regeneration is impaired with delayed or non-union of the tibia, which can lead to up to 13% fracture healing. In addition to the defective fracture, there are some other scenarios which necessitates bone regeneration like surgical reconstruction of large traumatic and resection defects or in the cases like avascular necrosis or osteoporosis [25].

Current clinical methods for the treatment of bone defects involve natural healing and bridging, grafting, synthetic bone substitutes etc. The conventional standard for the restoration of defective bone healing is by grafting using autografts or allografts. In many cases, bone defects can be healed and bridged by the natural mechanisms of bone repair. This involves ensuring proper alignment and stable fixation of the fractured bone, allowing the body's natural healing processes to take place [26]. Large bone defects can be bridged by callus formation and woven bone. This approach is suitable for bone segments that allow rigid fixation and have adequate vascular

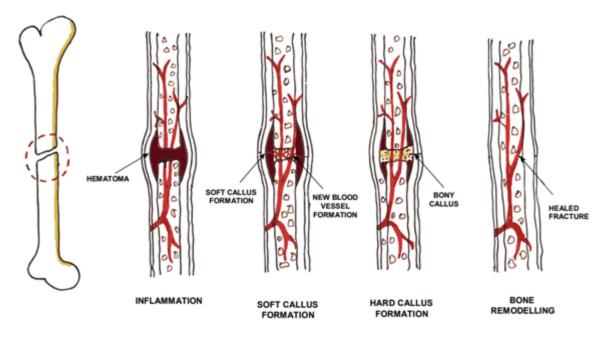


Figure 1: Schematic representation of bone fracture healing

supply [27].

Recent advances in bone regeneration

A wide variety of materials has been experimented to enhance bone regeneration like demineralized bone matrix xenograft, viscous spongy cellulose, bacteria strains secretion-derived bacterial cellulose, phytogenic materials (Gusuibu, coral-based bone substitutes, and marine algae) etc. Similarly, experimentation on synthetic media has also been [28,29]. The recent researches focus on polymer materials, tissue-engineered bones, nanoparticles etc. [30].

Numerous researchers have evaluated a wide variety of materials to find out their role in bone regeneration. Zhang et al used poly llactide (PLLA) films to repair traumatic bone defect in rabbits. The cortical bone formation was confirmed with histological findings. They also observed that the poly(L-lactide) inhibited the growth of fibroblasts [31] Diba et al evaluated magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics. A greater mineral apposition rate was seen in the bone that was newly formed noted in akermanite scaffolds, which improved bone regeneration [32]. Cheah et al suggest that currently, calcium compounds like calcium phosphate, calcium sulfate, tricalcium phosphate and hydroxy apatite offer the greatest synthetic alternative for bone regeneration. The â - tricalcium phosphate and calcium sulphate combination does not requires a membrane for directed bone regrowth [33]. Ielo et al observed that due to the chemical similarity of hydroxy apatite to the inorganic component of bone, it can be employed as a bone grafting material. However pure hydroxy apatite is poorly osteoconductive and extremely delicate. So, improving its crystallinity, surface characters, size, porosity or its combination with other metal ions such as strontium, zinc, magnesium will enhance the osteoconductive potential [34]. Esposito Corcione et al 3D printed composite material based on hydroxy apatite polymers to create personalized scaffolds for tissue engineering applications. They concluded that when compared to pure poly lactic acid, in HA based composite there was a modest

rise in the flexural modulus [35]. Fang et al developed a hydroxy apatite mineralized polyacrylamide/dextran hydrogel and observed that this hydrogel based on HA when evaluated in vitro promoted osteoblast adhesion, proliferation, and osteogenic differentiation [36]. Pakulska et al observed that the constituents of photo cross linkable polyanhydrides showed the convincing benefits for orthopaedic regeneration.[37] Helminen et al employed poly caprolactone-co-lactide as an alternative filler material as a bone deficiency filler material [38]. Matassi et al mentioned that tissue engineering frequently uses biodegradable synthetic polymers as scaffolds, including polyanhydrides, polypropylene fumarate, polycaprolactones, polyphosphazenes, polylactide, polyglycolide, and associated copolymers (polylactide-co-glycolide) [39]. Gao et al evaluated the ability of cell-secreted decellularized extracellular matrixes to promote osteogenic differentiation in reseeded bone marrow mesenchymal stem cells (BMSCs) and observed it to be favourable in ectopic osteogenesis. Furthermore, they suggested the potential utility of decellularized extracellular matrixes in bone tissue engineering [40].

Pountos et al conducted a systematic review regarding the significance of peptides in the healing and regeneration of bone and concluded that peptides increased the bone healing response in experimental setting and hence it gives the possibility of using those for clinical trials [41]. Tavafoghi et al reported that amino acids play a vital role in controlling the mineralization of bone [42]. Bafna et al reviewed Cissus quadrangularis L and concluded its anti-osteoporotic activity. Phytosterols in this species affect osteoblast differentiation and proliferation, which is responsible for the anti-osteoporotic activity [43]. A similar component of plant origin which help in bone regeneration is fucosterol [44]. Oxysterol a component that is derived from the oxidation of cholesterol molecule is found to be bone regenerative. In a study conducted with Oxy49 a cognate of oxysterol found to regenerate bone in a cranial defect in rabbit experimental model [45] Setchell K. D and Lydeking-Olsen E conducted a review on dietary phytoestrogens and their effect on bone. They reported that phytoestrogens Daidzein and genistein have been found to have a stimulatory effect on protein synthesis and on alkaline phosphatase release by various types of osteoblast cells *in vitro* [46].

Montagnani A et al reported the positive correlation between statins and bone mineral density. BMD was increased in patients supplemented with simvastatin [47]. Bassi et al evaluated bone regenerative ability of microbial biopolymers bacterial cellulose membrane and concluded that in bacterial cellulose membrane group in the rat model, the immunohistochemical analysis of calvarial defect showed the presence of bone biomarkers osteocalcin and osteopontin [48]. Xu et al reported the long-term bone repair ability of tricalcium phosphate (TCP) due to its high alkaline nature and absorbability [49]. Numerous other areas have also been researched, and one area of focus among them is the nanoparticles. A wide range of nanoparticles has reported to have bone regeneration ability.

Biomedical application of nanoparticles

The use of nanoparticles in many biomedical applications, has been gaining interest during the past few years. Nanoparticles has better properties compared to its larger counterpart owing to its surface to volume ratio. Their applications include targeted delivery of drugs, hyperthermia, photoablation treatment, bioimaging, biosensors etc. [50]. Biomedical applications are broadly categorized into two groups: therapeutics (treating diseases, trauma, or morbidity) and diagnostics [51]. Targeted drug delivery, or TDD, is a modern technique, which entails raising the concentration of the drug just in the specific bodily part of interest such as cells, tissues or organs. Increased solubility due to small particle size, increased bioavailability, biodistribution, accumulation of therapeutics in the targeted area, ability to cross blood brain barrier, enter pulmonary system, absorption through tight junctions of endothelial cells makes nanoparticles suitable for targeted drug delivery [52].

When creating target-specific drug delivery systems, metallic, organic, inorganic, and polymeric nanostructures-such as liposomes, micelles, and dendrimers-are commonly taken into account [53]. Watkins et al reported that the bioavailability of natural products can be increased by nanoparticles both in vitro and *in vivo* [54]. Numerous synthetic polymers, including polyvinyl alcohol, poly-L-lactic acid, polyethylene glycol, and poly (lactic-co-glycolic acid), along with natural polymers like alginate and chitosan, find widespread application in the fabrication of nanoparticles at the nanoscale [55].

In recent times, there has been a surge of interest in utilizing nanomaterials to enhance biomedical detection and imaging. This is primarily due to their distinctive passive, active, and physical targeting properties. Nanoparticles, owing to their diminutive size, demonstrate an augmented ability to permeate and accumulate in tumors, resulting in higher concentrations of contrast agent within the local tumor area [56]. Dye-loaded fluorescent silica nanoparticles (SiNPs) are used for non-invasive fluorescent imaging [57]. Lanthanide-doped upconverting nanoparticles (UCNPs) used as imaging contrast reagents [58].

Iron oxide nanoparticles are used as contrast agents in MRI because of its superparamagnetic nature and exhibit magnetization solely when exposed to a magnetic field [59]. Quantum dot-based nanoparticles are reported to be used in the imaging of tumours [60]. Near-infrared (NIR) absorbing carbon nanotubes can be utilized in the imaging of adipose tissue due to its strong attraction towards apolipoproteins and resistance to macrophage phagocytosis. Consequently, they specifically gather on capillary endothelial cells within adipose tissue, while larger vessels remain unaffected [61].

Hyperthermia therapy is a non-surgical procedure which elevates temperature of the tumour to destroy the cancer cells. [62] Kaur et al suggest the potential possibility of using nanoparticle mediated hyperthermia therapy [63].

Nanoparticles and nanocomposites in bone regeneration

One of the current trends is to combine different disciplines or fields to improve medical efficiency. It includes engineering, digital technology, robotics etc. One among them is TERM which conjugates tissue engineering and regenerative medicine. The goal of tissue engineering and regenerative medicine (TERM) is to combine engineering and biological characteristics to provide useful replacements for diseased and damaged tissues. It would be able to improve, maintain, or even restore tissue function [64].

Another issue in bone healing and regeneration is the potential for contamination and infection especially in open fractures. Join Lambert et al mentioned such a contamination with Staphylococcus aureus and its resulting complications like failure of removal of microbes and increase susceptibility to osteomyelitis in the sites containing osteoblasts [65]. But combining bone regeneration with tissue engineering is a cumbersome process because of the compounded structure of bone and its continuous exposure to load and stress. This problem can be resolved with nano technology. Nano technology led to the development of structures that are the same size as those seen in naturally occurring bone. Also, it had abilities to cross the biological (microenvironmental, cellular and systemic) barriers [66].

Nanoparticles

Nanoparticles include nanotubes, nanocrystals, nanoclusters, nanorods, nanofibers, nanofilms etc. Nanoparticles have an impact on various aspects of cell behaviour, including cell signalling, proliferation, viability, and integration [67]. Moreover, they play a crucial role in not just supporting cells, but also in governing the function, proliferation, differentiation, and migration of osteoblasts [68]. Nanoparticles which possess regeneration ability so far researched are gold nanoparticles, silver, zinc oxide, hydroxy apatite, calcium, copper, titanium etc. [69].

Gold nanoparticles

Gold nanoparticles find extensive applications in various fields such as diagnostics, drug delivery, biomedical imaging, and photothermal therapy. This is primarily attributed to their unique properties including surface plasmon resonance, fluorescence, and

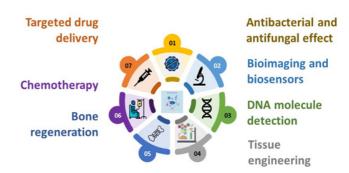


Figure 2: Schematic representation of bio-medical application of nanoparticles

the ease with which their surface can be functionalized. The impact of GNPs on osteogenic differentiation is scientifically evident in vitro Heo et al conducted a study on biodegradable hydrogel loaded with GNPs and reported that the outcomes of the in vitro experiments indicated that the hydrogels containing GNPs enhance the proliferation, differentiation, and alkaline phosphate (ALP) activities of human adipose-derived stem cells (ADSCs) as they transition into osteoblast cells in a manner that depends on the dosage [70]. Gold nanoparticles (NPs) also impact various metabolic processes in the body, thereby directly or indirectly controlling the mechanism of bone regeneration. It also affects scaffold modulation to cellular stimulation [71]. Studies reveal that the gold nano nanoparticles have the potential to enhance the re-accumulation of osteogenic density in defect site. It could also result in amplification of osteogenic genes by the activation of p38 MAPK signalling pathway. Activation of this pathway will also result in differentiation and mineralization of primary osteoblasts [72].

Prevention of bone resorption is also reported as one of the benefits of gold nanoparticles in the bone regeneration. They possess antioxidant potential, produce reactive oxygen species on contrary to RANKL and increase RANKL induced glutathione peroxidase-1 and thereby interrupting the osteoclast formation and henceforth bone resorption [70], in an *in vivo* bone regeneration analysis on a composite based on gold nanoparticles and gelatin nanofibers, it was reported that this composite resulted in the formation of neo-bone, osteocyte in lacuna woven bone and angiogenesis at the site of injury [73]. Shi et al proposes the future use of gold nanoparticles in the treatment osteoporosis, arthritis and bone defects [74]. Based on the study report of Kirdaite et al gold nanoparticles exhibited antioxidant properties, histopathological evaluation showcased reduction of synovial angiogenesis and erosion genesis in the cartilage [75].

Silver nanoparticles

Silver nanoparticles (AgNPs) also have a wide variety of biomedical application. Extensive research has been conducted in silver nanoparticles to enhance the differentiation into osteoblasts. (AgNPs) have the ability to enhance the process of osteogenic differentiation in urine-derived stem cells. Moreover, they can be effectively integrated into tissue-engineered scaffolds that utilize urine-derived stem cells as the primary cells [76].

Lee et al evaluated suppressive impact of (AgNPs) on the

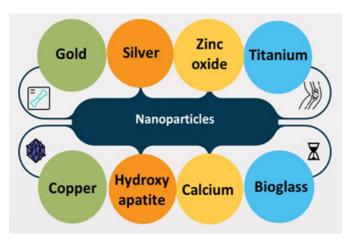


Figure 3: Schematic representation of nanoparticles with favourable bone regeneration ability

differentiation of osteoclasts. The study outcome revealed the inhibitory effect of silver nanoparticles on the activation of certain genes associated with the differentiation into osteoclasts, including c-Fos, NFATc1, RAP, and CTSK, was observed. [77] Literatures also report the osteoinductive properties of (AgNPs). Its ability to regulate the proliferation and differentiation of mesenchymal stem cells involved in bone regeneration. [78] Zhang et al conducted a study to evaluate the ability of AgNPs in the osteogenesis of stem cells. The author transplanted AgNPs to defect area in animal model and observed fracture callus produce, which is suggestive of the osteogenic effect of the nanoparticle and its potential to be used clinically for fracture healing [79].

AgNPs based natural latex occlusive membrane placed in a calvarial defect in a rat model is reported to produce faster phase of bone regeneration compared to the group without the nanoparticles. Suggestive evidence for the bone regenerative ability of silver nanoparticles [80]. AgNPs were combined with Calcium carbonate nanoparticles and evaluated for bone healing effect. Osteoinductive and osteogenic properties were improved when AgNPs were combined with calcium carbonate nanoparticles than when calcium carbonate nanoparticles used alone. Also, the absorption of calcium carbonate nanoparticles was improved with the combination [81].

AgNPs can be possibly used for fracture healing. This property was exhibited by gelatin-based silver nanoparticle hydrogels. Higher amount of mineralization was demonstrated by the AgNPs hydrogels [82]. Silver nanoparticles are found to be useful in bone surgery instruments as well. This is possible owing to its antimicrobial property. AgNPs can be used to coat the implant surface, bone grafts and membranes, scaffolds for bone. This will prevent microbial contamination and henceforth periimplantitis, which in turn is beneficial for a better osseointegration [83].

Zinc-oxide nanoparticles

Zinc-oxide nanoparticles (ZnO NPs) has extensively researched in different fields including biomedicine is form of zinc containing metal oxide nanoparticles [84]. The human body retains most of its zinc mineral concentration in the bones similar to calcium. [85] Deficiency of zinc will affect the functioning of bone [86]. Zinc also plays a key role in growth and development of bone [87]. ZnO-NPs exhibit osteogenic characteristics via promoting bone development and mineralization. Zalama et al reported the ability of ZnO-NPs to heal bone defect in an animal model when combined with protein rich fibrin [88].

ZnO-NPs also have the advantage of its inexpensive and simple preparation. There are various methods employed for the preparation of ZnO-NPs. Those include physical, chemical, biological procedures. Physical methods are grinding, milling, thermal evaporation, pulsed laser deposition etc. [89]. Chemical methods include photochemical and chemical reduction, sol-gel, chemical precipitation etc. Green synthesis is the biological process for the synthesis of ZnO-NPs. Green synthesis is found to be more beneficial owing to its non-toxic and nature friendly properties. [90] Kalpana et al green synthesized ZnO-NPs using Lagenaria siceraria extract are reported its potential to be used for biomedical applications [91]. Bhuyan et al utilized Azadirachta indica (neem) leaf extract for the green synthesis of ZnO-NPs. [92] The leaves of Azadirachta indica are typically utilized to synthesize ZnO-NPs [93].

ZnO-NPs synthesized based on *S. baicalensis* revealed proliferation of human osteoblast-like MG-63 cells which is suggestive of its role in bone remodelling. Collagen-1 and Alkaline phosphatase expression was observed, which is an early indication of osteogenic

cell differentiation [94]. Prado-prone et al combined ZnO-NPs with polycaprolactone- gelatin membrane and evaluated for its osteogenic potential and observed the presence of calcium and bio-markers of osteoblast. Also reported that this combination also has the ability to decrease the likelihood of infection and encourage the transformation of stem cells already present in the body into osteoblasts, which aids in the regrowth of bone in medical treatments. The combination demonstrated no cytotoxicity as the bone cell viability and proliferation exceeds 70% [95].

One of the mechanisms by which the ZnO-NPs influence the bone formation is by converting MC3T3-E1pre- osteoblastic cells by them into osteoblastic cells and thereby enhancing the alkaline phosphatase activity, synthesis of collagen and osteocalcin. This is an indication of osteoblast differentiation of bone growth. It was also observed that ZnO-NPs would also minimize osteoblast damage caused by mitochondrial malfunction. [96] Fouroutan et al mention the differentiation of human mesenchymal stem cells to osteoblasts when exposed to ZnO-NPs. There was significant expression of genes like osteocalcin, osteopontin, alkaline phosphate in RT-PCR analysis when human mesenchymal stem cells combined with 30 mg mL-1 ZnO-NPs [97].

One of the concerns with ZnO-NPs was its cytotoxicity effect. The primary reason for the cytotoxicity of ZnO-NPs is the significant production of reactive oxygen species (ROS) and the presence of dissolved Zn²⁺ in the culture medium or within cells. [98] [99] However the cytotoxicity is dose-dependent and needs further scientific researches for an evidenced conclusion [100,101].

Hydroxy apatite nanoparticles

Hydroxy apatite (HA) nanoparticles are widely recognized as the building blocks of calcified tissues like bone and teeth [102]. Nano hydroxy apatite scaffolds found to promote the growth and differentiation of human mesenchymal stem cells [103]. Researches with HA nanoparticles report it to be a material which enhances bioactivity of implant and reconstruction bone materials. It also has excellent biocompatibility and osseointegration capabilities [104].

Xu et al compared the effect on bone repair as scaffolds with HA and TCP in combination with poly (lactic-co-glycolic acid) (PLGA) and reported that the HAp /PLGA scaffold outperformed the TCP/PLGA scaffold in terms of mechanical strength and cell proliferation, leading to greater early bone regeneration performance [105]. One of the factors which make nano HA particles favourable material for bone remodelling is its porous nature. Porosity promotes vascularization and angiogenesis [106]. However just porosity is not sufficient for complete bone formation, there has to be pore interconnectivity. Pore interconnectivity will aid in cell and protein adhesion, migration and its differentiation. It also influences fluid penetration and signalling during bone development [107]. Using foam-gel technique Tamai et al developed a completely interconnected porous calcium hydroxyapatite ceramic. They observed new bone formation within a span of 6 weeks with increased strength for the HA material which makes it a superior bone substitute [108].

Numerous researches have been conducted to overcome the disadvantages of HA nanoparticles by combining them with different cells, growth factors, certain natural and synthetic materials. HA and collagen combination is found to have improved properties. Collagen mitigating the low strength or brittle nature of HA [109]. Coupling of HA nanoparticles was found to be useful in bone forming procedure as it improves biocompatibility [110]. Krishnan et al combined Vancomycin with HA nanoparticles and reported that this combination stimulates new bone formation [111].

Osteogenic activity was observed when nano HA particles were coproduced using γ -polyglutamic acid and copper [112].

The mechanism by the nano HA particles enhances the bone tissue regeneration is by promoting cell adhesion, proliferation and differentiation through intercellular contact enhancement. The signalling pathway for HA nanoparticles is through the FGF receptor and Phosphate Transporter, which in turn activate the extracellular signal regulated kinase (ERK) pathway. ERK pathway activates OPN expression which is a bio marker of bone regeneration. The overall advantages of HA nanoparticles include its ability to improve connectivity with the surrounding network. Due to its increased surface area, it absorbs faster, has more molecules on the surface and attach bone cells more compared to conventional hydroxyapatite. Pertaining to its strong bio affinity, it could promote bone integration, collagen I expression, and osteoblast differentiation [113].

Nanocomposites

A nano composite is a material composed of two or more distinct phases at the nanoscale, typically consisting of a matrix phase and a reinforcement phase. The reinforcement phase usually takes the form of nanoparticles, nanofibers, or nanosheets, dispersed within the matrix phase. Nano composites can be designed to enhance biological activity. Human bone itself is a nanocomposite of hydroxy apatite and collagen fibres. Nanocomposites can offer greater benefits than a particular nano material in terms with bone regeneration as a single material cannot reciprocate the properties of bone

It contributes to enhanced mechanical properties, improved bioactivity, controlled drug delivery, anti-bacterial properties, better biocompatibility, precision and control, promotion of angiogenesis etc to bone tissue engineering. Nano composite materials used for bone regeneration typically involve a combination of biocompatible polymers and nano-sized reinforcements such as nanoparticles or nanofibers. They are employed as polymer-ceramic nanocomposites, nano hydrogels, nano fibre-reinforced scaffolds, nano particle-functionalized scaffolds, nano composite coatings, nano films, nano rods etc. Common types of nano composite materials employed in bone tissue engineering include natural, metal-based, polymer-based and ceramic-based nanocomposites.

Natural nanocomposites

Natural or bio-nano composites was widely researched due to its ability to emulate the properties of natural bone tissue. Moreover, it these materials have the advantage of its biocompatibility, biodegradability, bio performance etc. These natural materials are key components of the extracellular matrix, helping to preserve its structure. Additionally, they offer facilitate cellular adhesion. On this note various natural combination have been experimented [114].

Nanocomposites were developed from collagen and hydroxy apatite were evaluated for its role in bone regeneration. It was tested effective to be used in bone tissue engineering as osteoblast-like MG63 cells revealed alkaline phosphatase amplification. The study results also reported its potential to be used as an implant coating for osseointegration because the collagen-hydroxyapatite nanocomposite exhibited osteoconductivity when coated over titanium [115]. Azami et al created a gelatin- hydroxy apatite nanostructured scaffold and assessed its potential for bone tissue engineering. They observed excellent cell attachment, migration, and penetration in the scaffold with improved mechanical strength [116]. Silk fibroin nanocomposites has been reported in the

Figure 4: Schematic representation of nanocomposites with favourable bone regeneration ability

differentiation of bone marrow mesenchymal stem cells [117].

A polysaccharide chitosan based hydroxy apatite nanocomposite were reported for greater levels of MC3T3-E1 cell proliferation. In addition to this greater osteoblastic activity and compressive strength was observed [118]. Hydroxyapatite based nanocomposites are reported to enhance the bone bio marker activities. It has influence on mesenchymal stem cells. The bio markers found to be affected by HA nanoparticles are Runx2, BMP2, Osteopontin, Osteocalcin etc. [119]. Additionally, the absorption of a ceramic nanohydroxyapatite composites is gradual, and after being implanted in the body, HA has the potential to become permanently incorporated into the newly formed bone tissue.

Metal nanocomposites

Various metal-based nanoparticles have the capacity to regenerate bone. Hence various combinations were experimented and nano composites based on metals were created and evaluated for their effectiveness in promoting bone tissue regeneration. Nano composites which shown positive outcomes were gold, silver, titanium etc. These metal nano particles were integrated into hydrogels to create scaffolds for bone regeneration [120].

A multifunctional hydrogel nanocomposite was developed by González-Sánchez et al which exhibited osteoconduction and antibacterial effect. The authors propose the potential use of silver nanoparticle-based hydrogel for the purpose of bone regeneration. Also, the cytotoxicity evaluated reported the nano composite to be non-toxic [121]. Xu et al synthesized silver nanoparticle and polyethylene hydrogel from mussel- inspired polydopamine. Real time PCR analysis of the nano-composite revealed the expression of Runx2, alkaline phosphate, bone sialo protein and osteocalcin genes in MC3T3-E1 cells. Also, in-vivo analysis revealed increased healing of the bone defect. These results suggest its potential to be used for bone tissue engineering [122].

Tentor et al created chitosan/ pectin and gold nanoparticle-based hydrogel. This nanocomposite was used as a scaffold. They observed MC3T3-E1 cell growth and division. They also commented on the biocompatibility of the composite [123]. Numerous literatures establish the role of gold nanoparticle- based composite in the osteogenic differentiation of MC3T3-E1 osteoblast-like cells and thereby establishing its role in bone regeneration [124,125] Injectable hydrogels with N-acetyl cysteine attached gold nanoparticles expressed osteogenic activity. Furthermore, they demonstrated favourable biocompatibility and improved mechanical properties [126]. Gold and silver nanoparticle mediated silk fibroin/

nanohydroxyapatite hydrogel composite revealed adhesion of osteoblasts cells [127].

Titanium is considered as gold standard of implants of dental and orthopaedic purposes because of its similar modulus of elasticity as that of bone. Nano application comes to the titanium nanotubes and nanocomposites. Gusmao et al prepared a nanocomposite based on nanohydroxyapatite and titanium nanotubes. Different concentrations of nanocomposite were prepared based on 1%, 2%,3% and 10% weight of titanium nanotubes. The authors reported the increased bone regeneration by the composite in which 10% concentration exhibited the greater bone regeneration [128]. Nano TiO₂ composites of collagen and chitosan was found to be an effective scaffold for the formation of new bone [129].

Polymer nanocomposites

In order to overcome the mechanical strength issue with natural polymers, many synthetic polymers have been evaluated. One among such material is graphene oxide (GO). Due to low toxicity and osteoconductive potential, GO-based composites was introduced foe bone tissue engineering. [130] Al-Arjan et al developed a polymeric nanocomposite using arabinoxylan, apple pectin, hydroxyapatite nanoparticles and GO. They observed bone scaffold regeneration and suggested the future use of this nanocomposite for fracture healing [131]. Early synthetic polymer employed for guided bone regeneration documented was extended form of Polytetrafluoroethylene (e-PTFE). However, there is potential for microbial infection when e-PTFE exposed to oral environment leading to poor osseointegration and bone tissue regeneration. So, the experimentation replacing e-PTFE was carried out with PGA, PLA, PCL, their co-polymers etc. [132] Poly lactic acid nanocomposites have expressed more bio activeness which makes it suitable as a scaffold for bone regeneration [133].

Zhang et al evaluated elastic properties poly glycerol sebacate nanocomposite and observed that the cell adhesion was poor. [134] Carbon nanotubes have been experimented for bone tissue regeneration. A promotion in osteoblastic function was observed in a nanocomposite based on Carbon nanotubes and polylactic acid [135].

Ceramic nanocomposites

Ceramic based nanocomposites have also been experimented for bone regeneration. Calcium sulfate nanocomposite is found to have osteogenesis potential, in addition to its biocompatibility and bioresorbability. It was reported to increase surface area, which in turn increases the mechanical strength and thereby enhancing osteoconductivity [136]. Lobo et al reported the bone regeneration ability of biphasic calcium phosphate (BCP) ceramics. BCP was reported to be a favourable scaffold for bone formation. The resorption rate of BCP is more compared to hydroxy apatite. When the resorption rate is minimal, there will be apatite layer formation due to release of calcium. This is responsible for the osteoconductive and osteoinductive nature of ceramic materials. Osteoconduction by the material is characterized by the growth of mature osteoblasts cells and direct juxtaposition of bone on to the surface. However, in osteoinduction, acquisition of undifferentiated cells will take place and conversion of the cells to osteoblasts which further result in bone formation [137]. Ramay et al suggested the role of â-TCP and hydroxy apatite nanocomposite in scaffold formation for stress bearing bone reconstruction [138]. BCP, when incorporated with nanocrystals, it exhibited excellent bone regeneration [139].

Multilayered scaffolds were prepared based on Si -substituted nano calcium phosphates. Researchers found that scaffolds made of silicon promoted a structural transition from nano-HA to nano-TCP, which in turn improved osteoblast adhesion, spreading, growth, and proliferation. These scaffolds could be useful in bone tissue engineering for purposes like regeneration and reconstruction [140]. Literatures have also reported the use of bio glass nanocomposite for bone regeneration purposes. Kim et al developed a bioactive glass and collagen matrix-based nanocomposite and concluded that this nanocomposite induced the formation of bone – like apatite minerals which is suggestive of new bone formation [141]. Bio glass nanocomposites reported to have osteoconductive, osteogenic, antibacterial and angiogenic properties, which could be promising for the development of a newer material for bone regeneration [142].

In general, nano composites show significant potential in improving treatments for bone regeneration by tackling important hurdles like mechanical resilience, bioactivity, drug dispersal, and compatibility with living tissues. Further exploration and advancement in this area are likely to result in the creation of sophisticated nano composite scaffolds, enhancing the effectiveness of bone tissue engineering endeavours.

Conclusion

Bone regeneration is a crucial stage in healing of bony defects. However, in certain conditions, bone regeneration requirement is in excess than the normal potential for self-healing, such as for the reconstruction of large bone defects caused by trauma, infection and tumour resection, as well as skeletal abnormalities, or when the regenerative process is impaired by avascular necrosis or osteoporosis. This necessitates the use of greater potent bone regenerative materials. One of such material is nanoparticles.

Nanoparticles have unique properties like increased surface area, mechanical properties, bioactivity make it's a material of choice for bone regeneration. Its role in bone tissue engineering extends from angiogenesis to osteogenic cell adhesion, differentiation and proliferation. Hence the use of nanoparticles and nanocomposites have significant promising advance in the field of bone regeneration. However, the complete information regarding its biocompatibility, long-term effects, feasibility in production is not yet available. The ongoing and continued researches for its preclinical and clinical outcomes will be crucial and studies could help to fully unlock the therapeutic and applicative capacity of nanotechnology in bone tissue engineering and regenerative medicine.

References

- Buck DW 2nd, Dumanian GA. Bone biology and physiology: Part I. The fundamentals. Plast Reconstr Surg. 2012 Jun;129(6):1314-1320.
- Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care (Engl). 2017 Nov;26(6).
- Oli AN, Babajide Rowaiye A, Adejumo SA, Anazodo FI, Ahmad R, Sinha S, Haque M, Adnan N. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus. 2022 Nov 1;14(11):e30982.
- Szwed-Georgiou A, P³ociñski P, Kupikowska-Stobba B, Urbaniak MM, Rusek-Wala P, Szustakiewicz K, Piszko P, Krupa A, Biernat M, Gaziñska M, Kasprzak M, Nawrotek K, Mira NP, Rudnicka K. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng. 2023 Sep 11;9(9):5222-5254.
- Zhang X, Li Q, Wang Z, Zhou W, Zhang L, Liu Y, Xu Z, Li Z, Zhu C, Zhang X. Bone regeneration materials and their application over 20 years: A bibliometric study and systematic review. Front Bioeng Biotechnol. 2022 Oct 5;10:921092.
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12;399(10325):629-655.
- Camargo P, Satyanarayana KG, Wypych F. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Mater Res-Iberoam J Mater. 2009;12.

- Tiloke C, Phulukdaree A, Chuturgoon AA. The Chemotherapeutic Potential of Gold Nanoparticles Against Human Carcinomas: A Review. In: Nanoarchitectonics for Smart Delivery and Drug Targeting. 2016:783-811
- Wikipedia contributors. Nanoparticle. Wikipedia, The Free Encyclopedia. Available at: https://en.wikipedia.org/wiki/Nanoparticle. Accessed July 3, 2024.
- Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and Bone Regeneration. Bone Res. 2015; 3:15029.
- Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10).
- Wen J, Cai D, Gao W, He R, Li Y, Zhou Y, Klein T, Xiao L, Xiao Y. Osteoimmunomodulatory Nanoparticles for Bone Regeneration. Nanomaterials (Basel). 2023 Feb 10;13(4):692.
- Gupta K, V K, Gopal P Processing of Nanocomposites for Biomedical Applications. In 5th North American International Conference on Industrial Engineering and Operations Management 2020 Aug 9,
- Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, August 10 - 14, 2020
- 15. Kavimani V, Prakash KS, Thankachan T. Experimental investigations on wear and friction behaviour of SiC@r-GO reinforced Mg matrix composites produced through solvent-based powder metallurgy. Composites Part B: Engineering. 2019; 162:508-521.
- Ma X, Zhao X, Li X, Mou X, Liang XJ. Nanoparticles for Imaging and Treating Bone Cancer: A Mini-Review. Front Bioeng Biotechnol. 2019; 7:109
- 17. Ansari M. Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater. 2019 Dec;8(4):223-237.
- Carvalho MS, Cabral JMS, da Silva CL, Vashishth D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers (Basel). 2021 Mar 30;13(7):1095.
- Buckwalter JA, Cooper RR. Bone structure and function. Instr Course Lect. 1987;36:27-48.
- Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008 Nov;3 Suppl 3(Suppl 3):S131-9.
- 21. Nahian A, AlEssa AM. Histology, Osteocytes. 2023 May 1. In: StatPearls
 [Internet] Treasure Island (FL): StatPearls Publishing: 2024 Jan.
- [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan—.
 22. Boyce BF, Yao Z, Xing L. Osteoclasts have multiple roles in bone in addition to bone resorption. Crit Rev Eukaryot Gene Expr. 2009;19(3):171-80.
- Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 2008 Oct;19(5):459-66.
- 24. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011 Jun;42(6):551-5.
- Audigé L, Griffin D, Bhandari M, Kellam J, Rüedi TP. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res. 2005 Sep;438:221-32.
- Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012 Oct-Dec;8(4):114-24.
- Bigham-Sadegh A, Oryan A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int Wound J. 2015 Jun;12(3):238-47.
- 28. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005 Dec;36(12):1392-404.
- Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules. 2021 May 18;26(10):3007.
- Saravanan S, Leena RS, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016 Dec;93(Pt B):1354-1365.
- Zhang D, Kandadai MA, Cech J, Roth S, Curran SA. Poly(L-lactide) (PLLA)/multiwalled carbon nanotube (MWCNT) composite: characterization and biocompatibility evaluation. J Phys Chem B. 2006 Jul 6;110(26):12910-5.
- Diba M, Goudouri O-M, Tapia F, Boccaccini A. Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr Opin Solid State Mater Sci. 2014;18.
- 33. Cheah CW, Al-Namnam NM, Lau MN, Lim GS, Raman R, Fairbairn P, Ngeow WC. Synthetic material for bone, periodontal, and dental tissue regeneration: where are we now, and where are we heading next?

- Materials (Basel). 2021 Oct 15;14(20):6123.
- Lelo I, Calabrese G, De Luca G, Conoci S. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. Int J Mol Sci. 2022 Aug 27;23(17):9721.
- 35. Esposito Corcione C, Gervaso F, Scalera F, Montagna F, Maiullaro T, Sannino A, Maffezzoli A. 3D printing of hydroxyapatite polymerbased composites for bone tissue engineering. J Polym Eng. 2017;37(8):741-746.
- Fang J, Li P, Lu X, Fang L, Lü X, Ren F. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater. 2019 Apr 1;88:503-513.
- Pakulska MM. Combined delivery of chondroitinase ABC (ChABC) and stromal cell derived factor 1á (SDF1á) for spinal cord regeneration. 2016
- Helminen A, Korhonen H, Seppälä J. Cross-linked poly(-caprolactone/ D,L-lactide) copolymers with elastic properties. Macromol Chem Phys. 2002;203:2630-2639.
- 39. Matassi F, Nistri L, Chicon Paez D, Innocenti M. New biomaterials for bone regeneration. Clin Cases Miner Bone Metab. 2011 Jan
- 40. Gao CY, Huang ZH, Jing W, Wei PF, Jin L, Zhang XH, Cai Q, Deng XL, Yang XP. Directing osteogenic differentiation of BMSCs by cell-secreted decellularized extracellular matrixes from different cell types. J Mater Chem B. 2018 Dec 7;6(45):7471-7485.
- Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV. The role of peptides in bone healing and regeneration: a systematic review. BMC Med. 2016 Jul 11;14:103.
- 42. Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. J R Soc Interface. 2016 Oct;13(123):20160462.
- Bafna PS, Patil PH, Maru SK, Mutha RE. Cissus quadrangularis L: A comprehensive multidisciplinary review. J Ethnopharmacol. 2021 Oct 28:279:114355
- 44. Abdul QA, Choi RJ, Jung HA, Choi JS. Health benefit of fucosterol from marine algae: a review. J Sci Food Agric. 2016;96(6):1856-1866.
- Hokugo A, Sorice S, Parhami F, Yalom A, Li A, Zuk P, Jarrahy R. A novel oxysterol promotes bone regeneration in rabbit cranial bone defects. J Tissue Eng Regen Med. 2016 Jul;10(7):591-9.
- Setchell KD, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr. 2003 Sep;78(3 Suppl):5938-609S.
- 47. Montagnani A, Gonnelli S, Cepollaro C, Pacini S, Campagna MS, Franci MB, Lucani B, Gennari C. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study. Bone. 2003 Apr;32(4):427-33.
- 48. Farnezi Bassi AP, Bizelli VF, Brasil LFM, Pereira JC, Al-Sharani HM, Momesso GAC, Faverani LP, Lucas FA. Is the bacterial cellulose membrane feasible for osteopromotive property? Membranes (Basel). 2020;10(9):230.
- Xu S, Liu J, Zhang L, Yang F, Tang P, Wu D. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B. 2017.
- McNamara K, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys X. 2016;2(1):54-88.
- McNamara K, Tofail SAM. Biomedical applications of nanoalloys. In: Nanoalloys. 2013:345-371.
- 52. Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96(2):203-209.
- Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.
- 54. Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015 Sep 28;10:6055-74.
- Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetinloaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine. 2011;6:1621-30.
- 56. Oh IH, Min HS, Li L, Tran TH, Lee YK, Kwon IC, Choi K, Kim K, Huh KM. Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials. 2013 Sep;34(27):6454-63.
- 57. Prieto-Montero R, Katsumiti A, Cajaraville MP, López-Arbeloa I, Martínez-Martínez V. Functionalized Fluorescent Silica Nanoparticles for Bioimaging of Cancer Cells. Sensors (Basel). 2020 Sep 29;20(19):5590.
- 58. Du K, Feng J, Gao X, et al. Nanocomposites based on lanthanide-doped

- up conversion nanoparticles: diverse designs and applications. Light Sci Appl. 2022; 11:222.
- Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging an Immune Perspective. Front Immunol. 2021 Jun 15;12:688927.
- Jin S, Hu Y, Gu Z, Liu L, Wu HC. Application of quantum dots in biological imaging. J Nanomater. 2011;2011:834139.
- Yudasaka M, Yomogida Y, Zhang M, et al. Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep. 2017 Mar 17; 7:44760.
- 62. Farzin L, Saber R, Sadjadi S, Mohagheghpour E, Sheini A. Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol. 2022 Feb; 104:103201.
- Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles—promises and pitfalls. Int J Hyperthermia. 2016;32(1):76-88.
- 64. Vieira S, Vial S, Reis RL, Oliveira JM. Nanoparticles for bone tissue engineering. Biotechnol Prog. 2017 May;33(3):590-611.
- 65. Join-Lambert OF, Ezine S, Le Monnier A, Jaubert F, Okabe M, Berche P, Kayal S. Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cell Microbiol. 2005 Feb;7(2):167-80.
- Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics. 2018 Dec 11;10(4):269.
- 67. Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS, Feroze AH, Wong VW, Lorenz PH, Longaker MT, Wan DC. Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine. 2015;11(5):1253-1263.
- 68. Hasan A, Morshed M, Memic A, Hassan S, Webster T, Marei H. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637-5655.
- Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, Barthès J, Bat E, Tezcaner A, Vrana NE. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113.
- Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, Lee CH, Kim EC, Jung BY, Kwon IK. Enhanced bone regeneration with a gold nanoparticle-hydrogel complex. J Mater Chem B. 2014;2(11):1584-.
- Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: avenues and Prospects. Small. 2022 Jul;18(29):e2201462.
- 72. Li H, Pan S, Xia P, et al. Advances in the application of gold nanoparticles in bone tissue engineering. J Biol Eng. 2020;14:14.
- Samadian H, Khastar H, Ehterami A, et al. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep. 2021;11:13877.
- 74. Shi Y, Han X, Pan S, Wu Y, Jiang Y, Lin J, Chen Y, Jin H. Gold nanomaterials and bone/cartilage tissue engineering: biomedical applications and molecular mechanisms. Front Chem. 2021 Jul 9;9:724188.
- 75. Kirdaite G, Leonaviciene L, Bradunaite R, Vasiliauskas A, Rudys R, Ramanaviciene A, Mackiewicz Z. Antioxidant effects of gold nanoparticles on early stage of collagen-induced arthritis in rats. Res Vet Sci. 2019 Jun;124:32-37.
- 76. Qin H, Zhu C, An Z, Jiang Y, Zhao Y, Wang J, Liu X, Hui B, Zhang X, Wang Y. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Int J Nanomedicine. 2014 May 20; 9:2469-2478.
- 77. Lee D, Ko WK, Kim SJ, Han IB, Hong JB, Sheen SH, Sohn S. Inhibitory effects of gold and silver nanoparticles on the differentiation into osteoclasts in vitro. Pharmaceutics. 2021 Mar 29;13(4):462.
- 78. Damle A, Sundaresan R, Rajwade JM, Srivastava P, Naik A. A concise review on implications of silver nanoparticles in bone tissue engineering. Biomater Adv. 2022 Oct; 141:213099.
- 79. Zhang R, Lee P, Lui VC, Chen Y, Liu X, Lok CN, To M, Yeung KW, Wong KK. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015 Nov;11(8):1949-1959.
- Marques L, Martinez G, Guidelli É, Tamashiro J, Segato R, Payão SLM, Baffa O, Kinoshita A. Performance on bone regeneration of a silver nanoparticle delivery system based on natural rubber membrane NRL-AgNP. Coatings. 2020;10(4):323-.
- 81. Abd-Elkawi M, Sharshar A, Misk T, et al. Effect of calcium carbonate nanoparticles, silver nanoparticles and advanced platelet-rich fibrin for enhancing bone healing in a rabbit model. Sci Rep. 2023;13:15232.
- 82. Han X, He J, Wang Z, Bai Z, Qu P, Song Z, Wang W. Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and

- fracture treatment. Drug Deliv. 2021.
- Sivolella S, Stellini E, Brunello G, Gardin C, Ferroni L, Bressan E, Zavan B. Silver nanoparticles in alveolar bone surgery devices. J Nanomater. 2012;2012;975842.
- Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP antibacterial and osteogenesis properties in orthopedic applications: a review. Int J Nanomedicine. 2020;15:6247-6262.
- Huang T, Yan G, Guan M. Zinc homeostasis in bone: zinc transporters and bone diseases. Int J Mol Sci. 2020 Feb 12;21(4):1236.
- Lin W, Li D. Zinc and Zinc Transporters: Novel Regulators of Ventricular Myocardial Development. Pediatr Cardiol. 2018 Jun;39(5):1042-1051.
- 87. Prasad AS. Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol. 2014 Oct;28(4):357-63.
- 88. Zalama E, Karrouf G, Rizk A, et al. Does zinc oxide nanoparticles potentiate the regenerative effect of platelet-rich fibrin in healing of critical bone defect in rabbits? BMC Vet Res. 2022;18:130.
- Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944-12967.
- 90. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int. 2016.
- Nagarajan K, Payel C, Rajeswari D. Lagenaria siceraria aided green synthesis of ZnO NPs: anti-dandruff, anti-microbial and anti-arthritic activity. Res J Chem Environ. 2017;21:14-19.
- 92. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015.
- Kalpana VN, Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg Chem Appl. 2018 Aug 1;2018:3569758.
- 94. Tang Y, Rajendran P, Priya V, Hussain S, Pb Jana, Chinnathambi A, Alharbi S, Alahmadi T, Rengarajan T, Krishna Mohan S. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells. Mater Sci Eng C. 2021;119:111656.
- 95. Prado-Prone G, et al. 2023. Biomed. Phys. Eng. Express. 9:035011.
- Suh KS, Lee YS, Seo SH, Kim YS, Choi EM. Effect of zinc oxide nanoparticles on the function of MC3T3-E1 osteoblastic cells. Biol Trace Elem Res. 2013 Nov;155(2):287-294.
- Foroutan T, Mousavi S. The effects of zinc oxide nanoparticles on differentiation of human mesenchymal stem cells to osteoblast. Nanomed J. 2014;1(5):308-314.
- Syama S, Sreekanth PJ, Varma HK, Mohanan PV. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol Mech Methods. 2014 Dec;24(9):644-653.
- Deng X, Luan Q, Chen W, Wang Y, Wu M, Zhang H, Jiao Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology. 2009 Mar 18;20(11):115101.
- 100. Colombo G, Cortinovis C, Moschini E, Bellitto N, Perego MC, Albonico M, Astori E, Dalle-Donne I, Bertero A, Gedanken A, Perelsthein I, Mantecca P, Caloni F. Cytotoxic and proinflammatory responses induced by ZnO nanoparticles in in vitro intestinal barrier. J Appl Toxicol. 2019 Aug;39(8):1155-1163.
- 101. Zhou X, Yuan L, Wu C, Chen C, Luo G, Deng J, Mao Z. Recent review of the effect of nanomaterials on stem cells. RSC Adv. 2018;8(32):17656-17676.
- 102. Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite—past, present, and future in bone regeneration. Bone Tissue Regen Insights. 2016:7
- 103. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bünger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007 Feb;28(6):1036-1047.
- 104. Helmy Y, El-Kholy B, Marie M. In vivo animal histomorphometric study for evaluating biocompatibility and osteointegration of nanohydroxyapatite as biomaterials in tissue engineering. J Egypt Natl Canc Inst. 2010 Dec 1;22(4):241-250.
- 105. Xu S, Liu J, Zhang L, Yang F, Tang P, Wu D. Effects of HAp and TCP in constructing tissue engineering scaffolds for bone repair. J Mater Chem B. 2017;5.
- Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2019;3.
- 107. Zhu XD, Zhang HJ, Fan HS, Li W, Zhang XD. Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 2010 Apr;6(4):1536-1541.
- 108. Tamai N, Myoui A, Tomita T, Nakase T, Tanaka J, Ochi T, Yoshikawa H. Novel hydroxyapatite ceramics with an interconnective porous

- structure exhibit superior osteoconduction in vivo. J Biomed Mater Res. 2002 Jan:59(1):110-7.
- Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater. 2006 Mar 28;11:43-56.
- 110. Ragunathan S, Govindasamy G, Raghul DR, Karuppaswamy M, VijayachandraTogo RK. Hydroxyapatite reinforced natural polymer scaffold for bone tissue regeneration. Mater Today: Proc. 2019 Jul;13:2133-2139.
- 111. Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci. 2020 May 6;8(9):2653-2665.
- 112. Shu X, Liao J, Wang L, Shi Q, Xie X. Osteogenic, angiogenic, and antibacterial bioactive nano-hydroxyapatite co-synthesized using ãpolyglutamic acid and copper. ACS Biomater Sci Eng. 2020 Apr 13;6(4):1920-1930.
- 113. Lubna, Susilahati NLD, Krismariono A, Supandi SK, Maduratna E, Aisyah AK. Nano hydroxyapatite in bone regeneration: A literature review. World J Adv Res Rev. 2022;16(03):600-608.
- 114. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A Review. Adv Mater. 2015;27(7):1143-1169.
- 115. Kikuchi M. hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull. 2013; 36:1666-1669.
- 116. Azami M, Samadikuchaksaraei A, Poursamar SA. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Int J Artif Organs. 2010 Feb;33(2):86-95.
- 117. Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials. 2011;32(11):2812-2820.
- 118. Zhang J, Nie J, Zhang Q, Li Y, Wang Z, Hu Q. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. J Biomater Sci Polym Ed. 2014;25(1):61-74.
- 119. Lowe B, Hardy JG, Walsh LJ. Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega. 2019 Dec 18;5(1):1-9.
- Tan H-L, Teow S-Y, Pushpamalar J. Application of metal nanoparticle hydrogel composites in tissue regeneration. Bioengineering. 2019;6(1):17.
- 121. González-Sánchez MI, Perni S, Tommasi G, Morris NG, Hawkins K, López-Cabarcos E, Prokopovich P. Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C Mater Biol Appl. 2015 May; 50:332-40.
- 122. Xu H, Zhang G, Xu K, Wang L, Yu L, Xing MMQ, Qiu X. Mussel-inspired dual-functional PEG hydrogel inducing mineralization and inhibiting infection in maxillary bone reconstruction. Mater Sci Eng C Mater Biol Appl. 2018 Sep 1; 90:379-386.
- 123. Tentor FR, de Oliveira JH, Scariot DB, Lazarin-Bidóia D, Bonafé EG, Nakamura CV, Venter SAS, Monteiro JP, Muniz EC, Martins AF. Scaffolds based on chitosan/pectin thermosensitive hydrogels containing gold nanoparticles. Int J Biol Macromol. 2017 Sep; 102:1186-1194.
- 124. Heo DN, Ko WK, Bae MS, Lee JB, Lee DW, Byun W, et al. Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. J Mater Chem B. 2014;2(11):1584–1593.
- 125. Liu D, Zhang J, Yi C, et al. The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chin Sci Bull. 2010; 55:1013–1019.
- 126. Lee D, Heo DN, Nah HR, Lee SJ, Ko WK, Lee JS, Moon HJ, Bang JB, Hwang YS, Reis RL, Kwon IK. Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. Int J Nanomedicine. 2018 Nov 1; 13:7019-7031.
- 127. Ribeiro M, Ferraz MP, Monteiro FJ, Fernandes MH, Beppu MM, Mantione D, Sardon H. Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine. 2017 Jan;13(1):231-239.
- 128. Gusmão SB, Ghosh A, de Menezes AS, Pereira AFM, Lopes MTP, Souza MK, Dittz D, Abreu GJP, Pinto LSS, Maia Filho ALM, et al. Nanohydroxyapatite/Titanate nanotube composites for bone tissue regeneration. J Funct Biomater. 2022;13(4):306.
- 129. Zazakowny K, Lewandowska-fañcucka J, Mastalska-Pop³awska J, Kamiñski K, Kusior A, Radecka M, Nowakowska M. Biopolymeric hydrogels nanostructured TiO₂ hybrid materials as potential injectable scaffolds for bone regeneration. Colloids Surf B Biointerfaces. 2016

- Dec 1: 148:607-614.
- 130. Escudero ML, Llorente I, Pérez-Maceda BT, San José-Pinilla S, Sánchez-López L, Lozano RM, Aguado-Henche S, Clemente de Arriba C, Alobera-Gracia MA, García-Alonso MC. Electrochemically reduced graphene oxide on CoCr biomedical alloy: Characterization, macrophage biocompatibility and hemocompatibility in rats with graphene and graphene oxide. Mater Sci Eng C Mater Biol Appl. 2020;109:110522.
- 131. Al-Arjan WS, Aslam Khan MU, Nazir S, Abd Razak SI, Abdul Kadir MR. Development of arabinoxylan-reinforced apple pectin/graphene oxide/nano-hydroxyapatite based nanocomposite scaffolds with controlled release of drug for bone tissue engineering: in-vitro evaluation of biocompatibility and cytotoxicity against mc3t3-e1. coatings. 2020;10(11):1120.
- 132. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017 Oct;125(5):315-337.
- Alam F, Varadarajan KM, Kumar S. Three-dimentional printed polylactic acid nanocomposite scaffolds for tissue engineering applications. *Polym. Test.* 2020; 81:106203.
- 134. Zhang N. Magnetic nanocomposites and fields for bone and cartilage tissue engineering applications [dissertation]. UC Riverside; 2017. ProQuest ID: Zhang_ucr_0032D_13102. Merritt ID: ark:/13030/ m58h3gpx. Retrieved from https://escholarship.org/uc/item/7ni4n88x

- 135. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N. Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol. 2010 Apr 1;46(3):281-3.
- 136. Fernandes G, Abhyankar V, O'Dell JM. Calcium sulfate as a scaffold for bone tissue engineering: a descriptive review. J Dent Oral Disord Ther. 2021;9(1):1-22.
- Lobo SE, Arinzeh TL. Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials (Basel). 2010 Jan 29;3(2):815–26.
- 138. Ramay HR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171-5180.
- 139. Abbas M, Alqahtani MS, Alhifzi R. Recent developments in polymer nanocomposites for bone regeneration. Int J Mol Sci. 2023 Feb 7;24(4):3312.
- 140. Tomoaia G, Mocanu A, Vida-Simiti I, Jumate N, Bobos LD, Soritau O, Tomoaia-Cotisel M. Silicon effect on the composition and structure of nanocalcium phosphates. Mater Sci and Eng. C. 2014; 37:37–47.
- 141. Kim HW, Song JH, Kim HE. Bioactive glass nanofiber-collagen nanocomposite as a novel bone regeneration matrix. J Biomed Mater Res A. 2006 Dec 1;79(3):698-705.
- 142. Erol-Taygun M, Unalan I, Idris MIB, Mano JF, Boccaccini AR. Bioactive glass-polymer nanocomposites for bone tissue regeneration applications: A review. Adv Eng Mater. 2019;1900287.